Soleus- and gastrocnemii-evoked V-wave responses increase after neuromuscular electrical stimulation training.

نویسندگان

  • Julien Gondin
  • Julien Duclay
  • Alain Martin
چکیده

The aim of the study was to use combined longitudinal measurements of soleus (SOL) and gastrocnemii evoked V-wave and H-reflex responses to determine the site of adaptations within the central nervous system induced by 5 wk of neuromuscular electrical stimulation (NMES) training of the plantar flexor muscles. Nineteen healthy males subjects were divided into a neuromuscular electrostimulated group (n = 12) and a control group (n = 7). The training program consisted of 15 sessions of isometric NMES over a 5-wk period. All subjects were tested before and after the 5-wk period. SOL, lateral gastrocnemius (LG), and medial gastrocnemius (MG) maximal H-reflex and M-wave potentials were evoked at rest (i.e., H(max) and M(max), respectively) and during maximal voluntary contraction (MVC) (i.e., H(sup) and M(sup), respectively). During MVC, a supramaximal stimulus was delivered that allowed us to record the V-wave peak-to-peak amplitudes from all three muscles. The SOL, LG, and MG electromyographic (EMG) activity as well as muscle activation (twitch interpolation technique) were also quantified during MVC. After training, plantar flexor MVC increased significantly by 22% (P < 0.001). Torque gains were accompanied by an increase in muscle activation (+11%, P < 0.05), SOL, LG, and MG normalized EMG activity (+51, +54, and +60%, respectively, P < 0.05) and V/M(sup) ratios (+81, +76, and +97%, respectively, P < 0.05). H(max)/M(max) and H(sup)/M(sup) ratios for all three muscles were unchanged after training. In conclusion, the increase in voluntary torque after 5 wk of NMES training could be ascribed to an increased volitional drive from the supraspinal centers and/or adaptations occurring at the spinal level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of human plantar flexor muscles increases after electromyostimulation training -- Maffiuletti et al. 92 (4): 1383 -- Journal of Applied Physiology

TOP ABSTRACT INTRODUCTION METHODS RESULTS DISCUSSION REFERENCES Neuromuscular adaptations of the plantar flexor muscles were assessed before and subsequent to short-term electromyostimulation (EMS) training. Eight subjects underwent 16 sessions of isometric EMS training over 4 wk. Surface electromyographic (EMG) activity and torque obtained under maximal voluntary and electrically evoked contra...

متن کامل

Neuromuscular function and fatigue resistance of the plantar flexors following short-term cycling endurance training

Previously published studies on the effect of short-term endurance training on neuromuscular function of the plantar flexors have shown that the H-reflex elicited at rest and during weak voluntary contractions was increased following the training regime. However, these studies did not test H-reflex modulation during isometric maximum voluntary contraction (iMVC) and did not incorporate a contro...

متن کامل

Activation of human plantar flexor muscles increases after electromyostimulation training.

Neuromuscular adaptations of the plantar flexor muscles were assessed before and subsequent to short-term electromyostimulation (EMS) training. Eight subjects underwent 16 sessions of isometric EMS training over 4 wk. Surface electromyographic (EMG) activity and torque obtained under maximal voluntary and electrically evoked contractions were analyzed to distinguish neural adaptations from cont...

متن کامل

Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.

Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed sol...

متن کامل

Increased H-reflexes boost muscle contractions during tetanic stimulation of tibial nerves in neurologically-intact humans

Tetanic neuromuscular electrical stimulation (at 100 Hz) over ankle dorsiflexors and plantarflexors in persons with and without spinal cord injury can evoke contractions, which are considered spinal of origin, extra to those due to stimulating motor axons directly. Presently, we determined whether H-reflexes contribute to “extra” plantarflexion contractions, evoked in relaxed neurologically-int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 95 6  شماره 

صفحات  -

تاریخ انتشار 2006